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How Well Are We Doing?



variables 
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results

non-replicable 
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births
through 
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and 
flexwork?

“total effect on fertility …  
rather small
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Replication (crisis) in Demography?

Reasons whyReasons why not

- Strong methods 

- Strong focus on  
representative data 

- Less measurement error 

- Open data 

- Large N 

- Often descriptive 

- Non-experimental 

- Correlational, but little  
causal inference 

- Large N, yet star gazing 

- Controlling at will 

- “Culture” as a  
get-out-of-jail-for-free card 
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Predictability Crisis?

Social scientists studying the life course must 
find a way to reconcile a widespread belief  
that understanding has been generated by 
these data—as demonstrated by more than 
750 published journal articles using the Fragile 
Families data with the fact that the very same 
data could not yield accurate predictions of  
these important outcomes.

“
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The Proposal
a shift towards prediction  
leads to a more reliable  
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microsimulation can 
advance traditional 
statistical modelling
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out-of-sample  
predictive ability

- is easy(ier) to understand 

- can be compared across  
analytical techniques 

- can be compared across  
models 

- is less gameable 
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theory 
driven

data 
driven

theory-driven 
focus on (causal) estimates

support based on p-value

limited number of variables (k)

NHST weird theory-testing
long reign the linear model

pet variable problem

data-driven 
focus on predictive ability

support based on prediction

k may be larger than n

estimates less interpretable
computing intensive

vs
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data challenge: 
predicting life outcomes 
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by 160 teams 
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Data Challenge
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theory-driven data-driven

upper limit of prediction



Prediction Benchmarks

Progress usually comes from many 
small improvements; a change of  1% 
can be a reason to break out the 
champagne

“
Liberman, 2012



secret sauce of  data science“ Donoho, 2015
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No Panacea



But Much Needed
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preference theory

preference theory

socialisation

opportunity cost

role conflict

childbearing hinders education

biology
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innate factors

What Kind of  Data  
Would We need to  
Address This Model?
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determines whether and when  
people would like to conceive

sociology

medicine
determines whether and when  
people conceive
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{ABC}
Variation due to: 
preferred waiting time child 
differences in fecundability 
differences due to stochasticity

ABC
model

actual
outcomes

0 1 2 3 4 5 6 7 8 9 10111213141516
# years until birth since relation

frequency

∝age in relation 

∝
age in relation 
fecundability 
stochasticity 
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Where Did We 
Go Wrong?

1. No break-ups 
2. All births are preferred  
3. Preferences do not determine relationship 
4. Preferences do not determine education 
5. Preferences do not change 
6. Education is not related to ‘biology’ 
7. Preferences are measured well
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Assumptions

1. Make waiting time dependent on age  
and education 

2. Better measures of age in relationship       

Improvements



In Denmark, Norway and Sweden, childlessness 
is now highest among the least educated women“
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Unpredictable Variation!



Unpredictable Variation

inherent  
unpredictability



Unique Insight into State of  Field

?
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